# Pandas Transform: Preform operations on groups and concatenate the results
# Simple transform
# First, Lets create a dummy dataframe
We assume that a customer can have n orders, an order can have m items, and items can be ordered more multiple times
orders_df = pd.DataFrame()
orders_df['customer_id'] = [1,1,1,1,1,2,2,3,3,3,3,3]
orders_df['order_id'] = [1,1,1,2,2,3,3,4,5,6,6,6]
orders_df['item'] = ['apples', 'chocolate', 'chocolate', 'coffee', 'coffee', 'apples',
'bananas', 'coffee', 'milkshake', 'chocolate', 'strawberry', 'strawberry']
# And this is how the dataframe looks like:
print(orders_df)
# customer_id order_id item
# 0 1 1 apples
# 1 1 1 chocolate
# 2 1 1 chocolate
# 3 1 2 coffee
# 4 1 2 coffee
# 5 2 3 apples
# 6 2 3 bananas
# 7 3 4 coffee
# 8 3 5 milkshake
# 9 3 6 chocolate
# 10 3 6 strawberry
# 11 3 6 strawberry
.
.
# Now, we will use pandas transform
function to count the number of orders per customer
# First, we define the function that will be applied per customer_id
count_number_of_orders = lambda x: len(x.unique())
# And now, we can tranform each group using the logic defined above
orders_df['number_of_orders_per_cient'] = ( # Put the results into a new column that is called 'number_of_orders_per_cient'
orders_df # Take the original dataframe
.groupby(['customer_id'])['order_id'] # Create a seperate group for each customer_id & select the order_id
.transform(count_number_of_orders)) # Apply the function to each group seperatly
# Inspecting the results ...
print(orders_df)
# customer_id order_id item number_of_orders_per_cient
# 0 1 1 apples 2
# 1 1 1 chocolate 2
# 2 1 1 chocolate 2
# 3 1 2 coffee 2
# 4 1 2 coffee 2
# 5 2 3 apples 1
# 6 2 3 bananas 1
# 7 3 4 coffee 3
# 8 3 5 milkshake 3
# 9 3 6 chocolate 3
# 10 3 6 strawberry 3
# 11 3 6 strawberry 3
# Multiple results per group
# Using transform
functions that return sub-calculations per group
In the previous example, we had one result per client. However, functions returning different values for the group can also be applied.
# Create a dummy dataframe
orders_df = pd.DataFrame()
orders_df['customer_id'] = [1,1,1,1,1,2,2,3,3,3,3,3]
orders_df['order_id'] = [1,1,1,2,2,3,3,4,5,6,6,6]
orders_df['item'] = ['apples', 'chocolate', 'chocolate', 'coffee', 'coffee', 'apples',
'bananas', 'coffee', 'milkshake', 'chocolate', 'strawberry', 'strawberry']
# Let's try to see if the items were ordered more than once in each orders
# First, we define a fuction that will be applied per group
def multiple_items_per_order(_items):
# Apply .duplicated, which will return True is the item occurs more than once.
multiple_item_bool = _items.duplicated(keep=False)
return(multiple_item_bool)
# Then, we transform each group according to the defined function
orders_df['item_duplicated_per_order'] = ( # Put the results into a new column
orders_df # Take the orders dataframe
.groupby(['order_id'])['item'] # Create a seperate group for each order_id & select the item
.transform(multiple_items_per_order)) # Apply the defined function to each group separately
# Inspecting the results ...
print(orders_df)
# customer_id order_id item item_duplicated_per_order
# 0 1 1 apples False
# 1 1 1 chocolate True
# 2 1 1 chocolate True
# 3 1 2 coffee True
# 4 1 2 coffee True
# 5 2 3 apples False
# 6 2 3 bananas False
# 7 3 4 coffee False
# 8 3 5 milkshake False
# 9 3 6 chocolate False
# 10 3 6 strawberry True
# 11 3 6 strawberry True