# Heapq
# Largest and smallest items in a collection
To find the largest items in a collection, heapq
module has a function called nlargest
, we pass it two arguments, the first one is the number of items that we want to retrieve, the second one is the collection name:
import heapq
numbers = [1, 4, 2, 100, 20, 50, 32, 200, 150, 8]
print(heapq.nlargest(4, numbers)) # [200, 150, 100, 50]
Similarly, to find the smallest items in a collection, we use nsmallest
function:
print(heapq.nsmallest(4, numbers)) # [1, 2, 4, 8]
Both nlargest
and nsmallest
functions take an optional argument (key parameter) for complicated data structures. The following example shows the use of age
property to retrieve the oldest and the youngest people from people
dictionary:
people = [
{'firstname': 'John', 'lastname': 'Doe', 'age': 30},
{'firstname': 'Jane', 'lastname': 'Doe', 'age': 25},
{'firstname': 'Janie', 'lastname': 'Doe', 'age': 10},
{'firstname': 'Jane', 'lastname': 'Roe', 'age': 22},
{'firstname': 'Johnny', 'lastname': 'Doe', 'age': 12},
{'firstname': 'John', 'lastname': 'Roe', 'age': 45}
]
oldest = heapq.nlargest(2, people, key=lambda s: s['age'])
print(oldest)
# Output: [{'firstname': 'John', 'age': 45, 'lastname': 'Roe'}, {'firstname': 'John', 'age': 30, 'lastname': 'Doe'}]
youngest = heapq.nsmallest(2, people, key=lambda s: s['age'])
print(youngest)
# Output: [{'firstname': 'Janie', 'age': 10, 'lastname': 'Doe'}, {'firstname': 'Johnny', 'age': 12, 'lastname': 'Doe'}]
# Smallest item in a collection
The most interesting property of a heap
is that its smallest element is always the first element: heap[0]
import heapq
numbers = [10, 4, 2, 100, 20, 50, 32, 200, 150, 8]
heapq.heapify(numbers)
print(numbers)
# Output: [2, 4, 10, 100, 8, 50, 32, 200, 150, 20]
heapq.heappop(numbers) # 2
print(numbers)
# Output: [4, 8, 10, 100, 20, 50, 32, 200, 150]
heapq.heappop(numbers) # 4
print(numbers)
# Output: [8, 20, 10, 100, 150, 50, 32, 200]