# Kruskal's Algorithm
# Optimal, disjoint-set based implementation
We can do two things to improve the simple and sub-optimal disjoint-set subalgorithms:
subalgo findSet(v: a node):
if v.parent != v
v.parent = findSet(v.parent)
return v.parent
subalgo unionSet(u, v: nodes):
vRoot = findSet(v)
uRoot = findSet(u)
if vRoot == uRoot:
return
if vRoot.height < uRoot.height:
vRoot.parent = uRoot
else if vRoot.height > uRoot.height:
uRoot.parent = vRoot
else:
uRoot.parent = vRoot
uRoot.height = uRoot.height + 1
This leads to O(alpha(n))
time for each operation, where alpha
is the inverse of the fast-growing Ackermann function, thus it is very slow growing, and can be considered O(1)
for practical purposes.
This makes the entire Kruskal's algorithm O(m log m + m) = O(m log m)
, because of the initial sorting.
Note
Path compression may reduce the height of the tree, hence comparing heights of the trees during union operation might not be a trivial task. Hence to avoid the complexity of storing and calculating the height of the trees the resulting parent can be picked randomly:
subalgo unionSet(u, v: nodes):
vRoot = findSet(v)
uRoot = findSet(u)
if vRoot == uRoot:
return
if random() % 2 == 0:
vRoot.parent = uRoot
else:
uRoot.parent = vRoot
In practice this randomised algorithm together with path compression for findSet
operation will result in comparable performance, yet much simpler to implement.
# Simple, more detailed implementation
In order to efficiently handle cycle detection, we consider each node as part of a tree. When adding an edge, we check if its two component nodes are part of distinct trees. Initially, each node makes up a one-node tree.
algorithm kruskalMST'(G: a graph)
sort G's edges by their value
MST = a forest of trees, initially each tree is a node in the graph
for each edge e in G:
if the root of the tree that e.first belongs to is not the same
as the root of the tree that e.second belongs to:
connect one of the roots to the other, thus merging two trees
return MST, which now a single-tree forest
# Simple, disjoint-set based implementation
The above forest methodology is actually a disjoint-set data structure, which involves three main operations:
subalgo makeSet(v: a node):
v.parent = v <- make a new tree rooted at v
subalgo findSet(v: a node):
if v.parent == v:
return v
return findSet(v.parent)
subalgo unionSet(v, u: nodes):
vRoot = findSet(v)
uRoot = findSet(u)
uRoot.parent = vRoot
algorithm kruskalMST''(G: a graph):
sort G's edges by their value
for each node n in G:
makeSet(n)
for each edge e in G:
if findSet(e.first) != findSet(e.second):
unionSet(e.first, e.second)
This naive implementation leads to O(n log n)
time for managing the disjoint-set data structure, leading to O(m*n log n)
time for the entire Kruskal's algorithm.
# Simple, high level implementation
Sort the edges by value and add each one to the MST in sorted order, if it doesn't create a cycle.
algorithm kruskalMST(G: a graph)
sort G's edges by their value
MST = an empty graph
for each edge e in G:
if adding e to MST does not create a cycle:
add e to MST
return MST
# Remarks
Kruskal's Algorithm is a greedy algorithm used to find Minimum Spanning Tree (MST) of a graph. A minimum spanning tree is a tree which connects all the vertices of the graph and has the minimum total edge weight.
Kruskal's algorithm does so by repeatedly picking out edges with minimum weight (which are not already in the MST) and add them to the final result if the two vertices connected by that edge are not yet connected in the MST, otherwise it skips that edge. Union - Find data structure can be used to check whether two vertices are already connected in the MST or not. A few properties of MST are as follows:
- A MST of a graph with
n
vertices will have exactlyn-1
edges. - There exists a unique path from each vertex to every other vertex.