# Type Erasure

Type erasure is a set of techniques for creating a type that can provide a uniform interface to various underlying types, while hiding the underlying type information from the client. std::function<R(A...)>, which has the ability to hold callable objects of various types, is perhaps the best known example of type erasure in C++.

# A move-only std::function

std::function type erases down to a few operations. One of the things it requires is that the stored value be copyable.

This causes problems in a few contexts, like lambdas storing unique ptrs. If you are using the std::function in a context where copying doesn't matter, like a thread pool where you dispatch tasks to threads, this requirement can add overhead.

In particular, std::packaged_task<Sig> is a callable object that is move-only. You can store a std::packaged_task<R(Args...)> in a std::packaged_task<void(Args...)>, but that is a pretty heavy-weight and obscure way to create a move-only callable type-erasure class.

Thus the task. This demonstrates how you could write a simple std::function type. I omitted the copy constructor (which would involve adding a clone method to details::task_pimpl<...> as well).

template<class Sig>
struct task;

// putting it in a namespace allows us to specialize it nicely for void return value:
namespace details {
  template<class R, class...Args>
  struct task_pimpl {
    virtual R invoke(Args&&...args) const = 0;
    virtual ~task_pimpl() {};
    virtual const std::type_info& target_type() const = 0;
  };

  // store an F.  invoke(Args&&...) calls the f
  template<class F, class R, class...Args>
  struct task_pimpl_impl:task_pimpl<R,Args...> {
    F f;
    template<class Fin>
    task_pimpl_impl( Fin&& fin ):f(std::forward<Fin>(fin)) {}
    virtual R invoke(Args&&...args) const final override {
      return f(std::forward<Args>(args)...);
    }
    virtual const std::type_info& target_type() const final override {
      return typeid(F);
    }
  };

  // the void version discards the return value of f:
  template<class F, class...Args>
  struct task_pimpl_impl<F,void,Args...>:task_pimpl<void,Args...> {
    F f;
    template<class Fin>
    task_pimpl_impl( Fin&& fin ):f(std::forward<Fin>(fin)) {}
    virtual void invoke(Args&&...args) const final override {
      f(std::forward<Args>(args)...);
    }
    virtual const std::type_info& target_type() const final override {
      return typeid(F);
    }
  };
};

template<class R, class...Args>
struct task<R(Args...)> {
  // semi-regular:
  task()=default;
  task(task&&)=default;
  // no copy

private:
  // aliases to make some SFINAE code below less ugly:
  template<class F>
  using call_r = std::result_of_t<F const&(Args...)>;
  template<class F>
  using is_task = std::is_same<std::decay_t<F>, task>;
public:
  // can be constructed from a callable F
  template<class F,
    // that can be invoked with Args... and converted-to-R:
    class= decltype( (R)(std::declval<call_r<F>>()) ),
    // and is not this same type:
    std::enable_if_t<!is_task<F>{}, int>* = nullptr
  >
  task(F&& f):
    m_pImpl( make_pimpl(std::forward<F>(f)) )
  {}

  // the meat: the call operator        
  R operator()(Args... args)const {
        return m_pImpl->invoke( std::forward<Args>(args)... );
  }
  explicit operator bool() const {
    return (bool)m_pImpl;
  }
  void swap( task& o ) {
    std::swap( m_pImpl, o.m_pImpl );
  }
  template<class F>
  void assign( F&& f ) {
    m_pImpl = make_pimpl(std::forward<F>(f));    
  }
  // Part of the std::function interface:
  const std::type_info& target_type() const {
    if (!*this) return typeid(void);
    return m_pImpl->target_type();
  }
  template< class T >
  T* target() {
    return target_impl<T>();
  }
  template< class T >
  const T* target() const {
    return target_impl<T>();
  }
  // compare with nullptr    :    
  friend bool operator==( std::nullptr_t, task const& self ) { return !self; }
  friend bool operator==( task const& self, std::nullptr_t ) { return !self; }
  friend bool operator!=( std::nullptr_t, task const& self ) { return !!self; }
  friend bool operator!=( task const& self, std::nullptr_t ) { return !!self; }
private:
  template<class T>
  using pimpl_t = details::task_pimpl_impl<T, R, Args...>;

  template<class F>
  static auto make_pimpl( F&& f ) {
    using dF=std::decay_t<F>;
    using pImpl_t = pimpl_t<dF>;
    return std::make_unique<pImpl_t>(std::forward<F>(f));
  }
  std::unique_ptr<details::task_pimpl<R,Args...>> m_pImpl;

  template< class T >
  T* target_impl() const {
    return dynamic_cast<pimpl_t<T>*>(m_pImpl.get());
  }
};

To make this library-worthy, you'd want to add in a small buffer optimization, so it does not store every callable on the heap.

Adding SBO would require a non-default task(task&&), some std::aligned_storage_t within the class, a m_pImpl unique_ptr with a deleter that can be set to destroy-only (and not return the memory to the heap), and a emplace_move_to( void* ) = 0 in the task_pimpl.

live example (opens new window) of the above code (with no SBO).

# Erasing down to a Regular type with manual vtable

C++ thrives on what is known as a Regular type (or at least Pseudo-Regular).

A Regular type is a type that can be constructed and assigned-to and assigned-from via copy or move, can be destroyed, and can be compared equal-to. It can also be constructed from no arguments. Finally, it also has support for a few other operations that are highly useful in various std algorithms and containers.

This is the root paper (opens new window), but in C++11 would want to add std::hash support.

I will use the manual vtable approach to type erasure here.

using dtor_unique_ptr = std::unique_ptr<void, void(*)(void*)>;
template<class T, class...Args>
dtor_unique_ptr make_dtor_unique_ptr( Args&&... args ) {
  return {new T(std::forward<Args>(args)...), [](void* self){ delete static_cast<T*>(self); }};
}
struct regular_vtable {
  void(*copy_assign)(void* dest, void const* src); // T&=(T const&)
  void(*move_assign)(void* dest, void* src); // T&=(T&&)
  bool(*equals)(void const* lhs, void const* rhs); // T const&==T const&
  bool(*order)(void const* lhs, void const* rhs); // std::less<T>{}(T const&, T const&)
  std::size_t(*hash)(void const* self); // std::hash<T>{}(T const&)
  std::type_info const&(*type)(); // typeid(T)
  dtor_unique_ptr(*clone)(void const* self); // T(T const&)
};

template<class T>
regular_vtable make_regular_vtable() noexcept {
  return {
    [](void* dest, void const* src){ *static_cast<T*>(dest) = *static_cast<T const*>(src); },
    [](void* dest, void* src){ *static_cast<T*>(dest) = std::move(*static_cast<T*>(src)); },
    [](void const* lhs, void const* rhs){ return *static_cast<T const*>(lhs) == *static_cast<T const*>(rhs); },
    [](void const* lhs, void const* rhs) { return std::less<T>{}(*static_cast<T const*>(lhs),*static_cast<T const*>(rhs)); },
    [](void const* self){ return std::hash<T>{}(*static_cast<T const*>(self)); },
    []()->decltype(auto){ return typeid(T); },
    [](void const* self){ return make_dtor_unique_ptr<T>(*static_cast<T const*>(self)); }
  };
}
template<class T>
regular_vtable const* get_regular_vtable() noexcept {
  static const regular_vtable vtable=make_regular_vtable<T>();
  return &vtable;
}

struct regular_type {
  using self=regular_type;
  regular_vtable const* vtable = 0;
  dtor_unique_ptr ptr{nullptr, [](void*){}};
  
  bool empty() const { return !vtable; }

  template<class T, class...Args>
  void emplace( Args&&... args ) {
    ptr = make_dtor_unique_ptr<T>(std::forward<Args>(args)...);
    if (ptr)
      vtable = get_regular_vtable<T>();
    else
      vtable = nullptr;
  }
  friend bool operator==(regular_type const& lhs, regular_type const& rhs) {
    if (lhs.vtable != rhs.vtable) return false;
    return lhs.vtable->equals( lhs.ptr.get(), rhs.ptr.get() );
  }
  bool before(regular_type const& rhs) const {
    auto const& lhs = *this;
    if (!lhs.vtable || !rhs.vtable)
      return std::less<regular_vtable const*>{}(lhs.vtable,rhs.vtable);
    if (lhs.vtable != rhs.vtable)
      return lhs.vtable->type().before(rhs.vtable->type());
    return lhs.vtable->order( lhs.ptr.get(), rhs.ptr.get() );
  }
  // technically friend bool operator< that calls before is also required

  std::type_info const* type() const {
    if (!vtable) return nullptr;
    return &vtable->type();
  }
  regular_type(regular_type&& o):
    vtable(o.vtable),
    ptr(std::move(o.ptr))
  {
    o.vtable = nullptr;
  }
  friend void swap(regular_type& lhs, regular_type& rhs){
    std::swap(lhs.ptr, rhs.ptr);
    std::swap(lhs.vtable, rhs.vtable);
  }
  regular_type& operator=(regular_type&& o) {
    if (o.vtable == vtable) {
      vtable->move_assign(ptr.get(), o.ptr.get());
      return *this;
    }
    auto tmp = std::move(o);
    swap(*this, tmp);
    return *this;
  }
  regular_type(regular_type const& o):
    vtable(o.vtable),
    ptr(o.vtable?o.vtable->clone(o.ptr.get()):dtor_unique_ptr{nullptr, [](void*){}})
  {
    if (!ptr && vtable) vtable = nullptr;
  }
  regular_type& operator=(regular_type const& o) {
    if (o.vtable == vtable) {
      vtable->copy_assign(ptr.get(), o.ptr.get());
      return *this;
    }
    auto tmp = o;
    swap(*this, tmp);
    return *this;
  }
  std::size_t hash() const {
    if (!vtable) return 0;
    return vtable->hash(ptr.get());
  }
  template<class T,
    std::enable_if_t< !std::is_same<std::decay_t<T>, regular_type>{}, int>* =nullptr
  >
  regular_type(T&& t) {
    emplace<std::decay_t<T>>(std::forward<T>(t));
  }
};
namespace std {
  template<>
  struct hash<regular_type> {
    std::size_t operator()( regular_type const& r )const {
      return r.hash();
    }
  };
  template<>
  struct less<regular_type> {
    bool operator()( regular_type const& lhs, regular_type const& rhs ) const {
      return lhs.before(rhs);
    }
  };
}    

live example (opens new window).

Such a regular type can be used as a key for a std::map or a std::unordered_map that accepts anything regular for a key, like:

std::map<regular_type, std::any>

would be basically a map from anothing regular, to anything copyable.

Unlike any, my regular_type does no small object optimization nor does it support getting the original data back. Getting the original type back isn't hard.

Small object optimization requires that we store an aligned storage buffer within the regular_type, and carefully tweak the deleter of the ptr to only destroy the object and not delete it.

I would start at make_dtor_unique_ptr and teach it how to sometimes store the data in a buffer, and then in the heap if no room in the buffer. That may be sufficient.

# Basic mechanism

Type erasure is a way to hide the type of an object from code using it, even though it is not derived from a common base class. In doing so, it provides a bridge between the worlds of static polymorphism (templates; at the place of use, the exact type must be known at compile time, but it need not be declared to conform to an interface at definition) and dynamic polymorphism (inheritance and virtual functions; at the place of use, the exact type need not be known at compile time, but must be declared to conform to an interface at definition).

The following code shows the basic mechanism of type erasure.

#include <ostream>

class Printable
{
public:
  template <typename T>
  Printable(T value) : pValue(new Value<T>(value)) {}
  ~Printable() { delete pValue; }
  void print(std::ostream &os) const { pValue->print(os); }

private:
  Printable(Printable const &)        /* in C++1x: =delete */; // not implemented
  void operator = (Printable const &) /* in C++1x: =delete */; // not implemented
  struct ValueBase
  {
      virtual ~ValueBase() = default;
      virtual void print(std::ostream &) const = 0;
  };
  template <typename T>
  struct Value : ValueBase
  {
      Value(T const &t) : v(t) {}
      virtual void print(std::ostream &os) const { os << v; }
      T v;
  };
  ValueBase *pValue;
};

At the use site, only the above definition need to be visible, just as with base classes with virtual functions. For example:

#include <iostream>

void print_value(Printable const &p)
{
    p.print(std::cout);
}

Note that this is not a template, but a normal function that only needs to be declared in a header file, and can be defined in an implementation file (unlike templates, whose definition must be visible at the place of use).

At the definition of the concrete type, nothing needs to be known about Printable, it just needs to conform to an interface, as with templates:

struct MyType { int i; };
ostream& operator << (ostream &os, MyType const &mc)
{
  return os << "MyType {" << mc.i << "}";
}

We can now pass an object of this class to the function defined above:

MyType foo = { 42 };
print_value(foo);

# Erasing down to a contiguous buffer of T

Not all type erasure involves virtual inheritance, allocations, placement new, or even function pointers.

What makes type erasure type erasure is that it describes a (set of) behavior(s), and takes any type that supports that behavior and wraps it up. All information that isn't in that set of behaviors is "forgotten" or "erased".

An array_view takes its incoming range or container type and erases everything except the fact it is a contiguous buffer of T.

// helper traits for SFINAE:
template<class T>
using data_t = decltype( std::declval<T>().data() );

template<class Src, class T>
using compatible_data = std::integral_constant<bool, std::is_same< data_t<Src>, T* >{} || std::is_same< data_t<Src>, std::remove_const_t<T>* >{}>;

template<class T>
struct array_view {
  // the core of the class:
  T* b=nullptr;
  T* e=nullptr;
  T* begin() const { return b; }
  T* end() const { return e; }

  // provide the expected methods of a good contiguous range:
  T* data() const { return begin(); }
  bool empty() const { return begin()==end(); }
  std::size_t size() const { return end()-begin(); }

  T& operator[](std::size_t i)const{ return begin()[i]; }
  T& front()const{ return *begin(); }
  T& back()const{ return *(end()-1); }

  // useful helpers that let you generate other ranges from this one
  // quickly and safely:
  array_view without_front( std::size_t i=1 ) const {
    i = (std::min)(i, size());
    return {begin()+i, end()};
  }
  array_view without_back( std::size_t i=1 ) const {
    i = (std::min)(i, size());
    return {begin(), end()-i};
  }

  // array_view is plain old data, so default copy:
  array_view(array_view const&)=default;
  // generates a null, empty range:
  array_view()=default;

  // final constructor:
  array_view(T* s, T* f):b(s),e(f) {}
  // start and length is useful in my experience:
  array_view(T* s, std::size_t length):array_view(s, s+length) {}

  // SFINAE constructor that takes any .data() supporting container
  // or other range in one fell swoop:
  template<class Src,
    std::enable_if_t< compatible_data<std::remove_reference_t<Src>&, T >{}, int>* =nullptr,
    std::enable_if_t< !std::is_same<std::decay_t<Src>, array_view >{}, int>* =nullptr
  >
  array_view( Src&& src ):
    array_view( src.data(), src.size() )
  {}

  // array constructor:
  template<std::size_t N>
  array_view( T(&arr)[N] ):array_view(arr, N) {}

  // initializer list, allowing {} based:
  template<class U,
    std::enable_if_t< std::is_same<const U, T>{}, int>* =nullptr
  >
  array_view( std::initializer_list<U> il ):array_view(il.begin(), il.end()) {}
};

an array_view takes any container that supports .data() returning a pointer to T and a .size() method, or an array, and erases it down to being a random-access range over contiguous Ts.

It can take a std::vector<T>, a std::string<T> a std::array<T, N> a T[37], an initializer list (including {} based ones), or something else you make up that supports it (via T* x.data() and size_t x.size()).

In this case, the data we can extract from the thing we are erasing, together with our "view" non-owning state, means we don't have to allocate memory or write custom type-dependent functions.

Live example (opens new window).

An improvement would be to use a non-member data and a non-member size in an ADL-enabled context.

# Type erasing type erasure with std::any

This example uses C++14 and boost::any. In C++17 you can swap in std::any instead.

The syntax we end up with is:

const auto print =
  make_any_method<void(std::ostream&)>([](auto&& p, std::ostream& t){ t << p << "\n"; });

super_any<decltype(print)> a = 7;

(a->*print)(std::cout);

which is almost optimal.

This example is based off of work by @dyp (opens new window) and @cpplearner (opens new window) as well as my own.

First we use a tag to pass around types:

template<class T>struct tag_t{constexpr tag_t(){};};
template<class T>constexpr tag_t<T> tag{};

This trait class gets the signature stored with an any_method:

This creates a function pointer type, and a factory for said function pointers, given an any_method:

template<class any_method>
using any_sig_from_method = typename any_method::signature;

template<class any_method, class Sig=any_sig_from_method<any_method>>
struct any_method_function;

template<class any_method, class R, class...Args>
struct any_method_function<any_method, R(Args...)>
{
  template<class T>
  using decorate = std::conditional_t< any_method::is_const, T const, T >;
  
  using any = decorate<boost::any>;
  
  using type = R(*)(any&, any_method const*, Args&&...);
  template<class T>
  type operator()( tag_t<T> )const{
    return +[](any& self, any_method const* method, Args&&...args) {
      return (*method)( boost::any_cast<decorate<T>&>(self), decltype(args)(args)... );
    };
  }
};

any_method_function::type is the type of a function pointer we will store alongside the instance. any_method_function::operator() takes a tag_t<T> and writes a custom instance of the any_method_function::type that assumes the any& is going to be a T.

We want to be able to type-erase more than one method at a time. So we bundle them up in a tuple, and write a helper wrapper to stick the tuple into static storage on a per-type basis and maintain a pointer to them.

template<class...any_methods>
using any_method_tuple = std::tuple< typename any_method_function<any_methods>::type... >;

template<class...any_methods, class T>
any_method_tuple<any_methods...> make_vtable( tag_t<T> ) {
  return std::make_tuple(
    any_method_function<any_methods>{}(tag<T>)...
  );
}

template<class...methods>
struct any_methods {
private:
  any_method_tuple<methods...> const* vtable = 0;
  template<class T>
  static any_method_tuple<methods...> const* get_vtable( tag_t<T> ) {
    static const auto table = make_vtable<methods...>(tag<T>);
    return &table;
  }
public:
  any_methods() = default;
  template<class T>
  any_methods( tag_t<T> ): vtable(get_vtable(tag<T>)) {}
  any_methods& operator=(any_methods const&)=default;
  template<class T>
  void change_type( tag_t<T> ={} ) { vtable = get_vtable(tag<T>); }
    
  template<class any_method>
  auto get_invoker( tag_t<any_method> ={} ) const {
    return std::get<typename any_method_function<any_method>::type>( *vtable );
  }
};

We could specialize this for a cases where the vtable is small (for example, 1 item), and use direct pointers stored in-class in those cases for efficiency.

Now we start the super_any. I use super_any_t to make the declaration of super_any a bit easier.

template<class...methods>
struct super_any_t;

This searches the methods that the super any supports for SFINAE and better error messages:

template<class super_any, class method>
struct super_method_applies_helper : std::false_type {};

template<class M0, class...Methods, class method>
struct super_method_applies_helper<super_any_t<M0, Methods...>, method> :
    std::integral_constant<bool, std::is_same<M0, method>{}  || super_method_applies_helper<super_any_t<Methods...>, method>{}>
{};

template<class...methods, class method>
auto super_method_test( super_any_t<methods...> const&, tag_t<method> )
{
  return std::integral_constant<bool, super_method_applies_helper< super_any_t<methods...>, method >{} && method::is_const >{};
}
template<class...methods, class method>
auto super_method_test( super_any_t<methods...>&, tag_t<method> )
{
  return std::integral_constant<bool, super_method_applies_helper< super_any_t<methods...>, method >{} >{};
}

template<class super_any, class method>
struct super_method_applies:
    decltype( super_method_test( std::declval<super_any>(), tag<method> ) )
{};

Next we create the any_method type. An any_method is a pseudo-method-pointer. We create it globally and constly using syntax like:

const auto print=make_any_method( [](auto&&self, auto&&os){ os << self; } );

or in C++17:

const any_method print=[](auto&&self, auto&&os){ os << self; };

Note that using a non-lambda can make things hairy, as we use the type for a lookup step. This can be fixed, but would make this example longer than it already is. So always initialize an any method from a lambda, or from a type parametarized on a lambda.

template<class Sig, bool const_method, class F>
struct any_method {
  using signature=Sig;
  enum{is_const=const_method};
private:
  F f;
public:

  template<class Any,
    // SFINAE testing that one of the Anys's matches this type:
    std::enable_if_t< super_method_applies< Any&&, any_method >{}, int>* =nullptr
  >
  friend auto operator->*( Any&& self, any_method const& m ) {
    // we don't use the value of the any_method, because each any_method has
    // a unique type (!) and we check that one of the auto*'s in the super_any
    // already has a pointer to us.  We then dispatch to the corresponding
    // any_method_data...

    return [&self, invoke = self.get_invoker(tag<any_method>), m](auto&&...args)->decltype(auto)
    {
      return invoke( decltype(self)(self), &m, decltype(args)(args)... );
    };
  }
  any_method( F fin ):f(std::move(fin)) {}
  
  template<class...Args>
  decltype(auto) operator()(Args&&...args)const {
    return f(std::forward<Args>(args)...);
  }
};

A factory method, not needed in C++17 I believe:

template<class Sig, bool is_const=false, class F>
any_method<Sig, is_const, std::decay_t<F>>
make_any_method( F&& f ) {
  return {std::forward<F>(f)};
}

This is the augmented any. It is both an any, and it carries around a bundle of type-erasure function pointers that change whenever the contained any does:

template<class... methods>
struct super_any_t:boost::any, any_methods<methods...> {
  using vtable=any_methods<methods...>;
public:
  template<class T,
    std::enable_if_t< !std::is_base_of<super_any_t, std::decay_t<T>>{}, int> =0
  >
  super_any_t( T&& t ):
    boost::any( std::forward<T>(t) )
  {
    using dT=std::decay_t<T>;
    this->change_type( tag<dT> );
  }
  
  boost::any& as_any()&{return *this;}
  boost::any&& as_any()&&{return std::move(*this);}
  boost::any const& as_any()const&{return *this;}
  super_any_t()=default;
  super_any_t(super_any_t&& o):
    boost::any( std::move( o.as_any() ) ),
    vtable(o)
  {}
  super_any_t(super_any_t const& o):
    boost::any( o.as_any() ),
    vtable(o)
  {}
  template<class S,
    std::enable_if_t< std::is_same<std::decay_t<S>, super_any_t>{}, int> =0
  >
  super_any_t( S&& o ):
    boost::any( std::forward<S>(o).as_any() ),
    vtable(o)
  {}
  super_any_t& operator=(super_any_t&&)=default;
  super_any_t& operator=(super_any_t const&)=default;
  
  template<class T,
    std::enable_if_t< !std::is_same<std::decay_t<T>, super_any_t>{}, int>* =nullptr
  >
  super_any_t& operator=( T&& t ) {
    ((boost::any&)*this) = std::forward<T>(t);
    using dT=std::decay_t<T>;
    this->change_type( tag<dT> );
    return *this;
  }  
};

Because we store the any_methods as const objects, this makes making a super_any a bit easier:

template<class...Ts>
using super_any = super_any_t< std::remove_cv_t<Ts>... >;

Test code:

const auto print = make_any_method<void(std::ostream&)>([](auto&& p, std::ostream& t){ t << p << "\n"; });
const auto wprint = make_any_method<void(std::wostream&)>([](auto&& p, std::wostream& os ){ os << p << L"\n"; });

int main()
{
  super_any<decltype(print), decltype(wprint)> a = 7;
  super_any<decltype(print), decltype(wprint)> a2 = 7;

  (a->*print)(std::cout);
  (a->*wprint)(std::wcout);
}

live example (opens new window).

Originally posted here (opens new window) in a SO self question & answer (and people noted above helped with the implementation).