# std::array
# Initializing an std::array
Initializing std::array<T, N>
, where T
is a scalar type and N
is the number of elements of type T
If T
is a scalar type, std::array
can be initialized in the following ways:
// 1) Using aggregate-initialization
std::array<int, 3> a{ 0, 1, 2 };
// or equivalently
std::array<int, 3> a = { 0, 1, 2 };
// 2) Using the copy constructor
std::array<int, 3> a{ 0, 1, 2 };
std::array<int, 3> a2(a);
// or equivalently
std::array<int, 3> a2 = a;
// 3) Using the move constructor
std::array<int, 3> a = std::array<int, 3>{ 0, 1, 2 };
Initializing std::array<T, N>
, where T
is a non-scalar type and N
is the
number of elements of type T
If T
is a non-scalar type std::array
can be initialized in the following ways:
struct A { int values[3]; }; // An aggregate type
// 1) Using aggregate initialization with brace elision
// It works only if T is an aggregate type!
std::array<A, 2> a{ 0, 1, 2, 3, 4, 5 };
// or equivalently
std::array<A, 2> a = { 0, 1, 2, 3, 4, 5 };
// 2) Using aggregate initialization with brace initialization of sub-elements
std::array<A, 2> a{ A{ 0, 1, 2 }, A{ 3, 4, 5 } };
// or equivalently
std::array<A, 2> a = { A{ 0, 1, 2 }, A{ 3, 4, 5 } };
// 3)
std::array<A, 2> a{{ { 0, 1, 2 }, { 3, 4, 5 } }};
// or equivalently
std::array<A, 2> a = {{ { 0, 1, 2 }, { 3, 4, 5 } }};
// 4) Using the copy constructor
std::array<A, 2> a{ 1, 2, 3 };
std::array<A, 2> a2(a);
// or equivalently
std::array<A, 2> a2 = a;
// 5) Using the move constructor
std::array<A, 2> a = std::array<A, 2>{ 0, 1, 2, 3, 4, 5 };
# Element access
1. at(pos)
Returns a reference to the element at position pos
with bounds checking. If pos
is not within the range of the container, an exception of type std::out_of_range
is thrown.
The complexity is constant O(1).
#include <array>
int main()
{
std::array<int, 3> arr;
// write values
arr.at(0) = 2;
arr.at(1) = 4;
arr.at(2) = 6;
// read values
int a = arr.at(0); // a is now 2
int b = arr.at(1); // b is now 4
int c = arr.at(2); // c is now 6
return 0;
}
2) operator[pos]
Returns a reference to the element at position pos
without bounds checking. If pos
is not within the range of the container, a runtime segmentation violation error can occur. This method provides element access equivalent to classic arrays and thereof more efficient than at(pos)
.
The complexity is constant O(1).
#include <array>
int main()
{
std::array<int, 3> arr;
// write values
arr[0] = 2;
arr[1] = 4;
arr[2] = 6;
// read values
int a = arr[0]; // a is now 2
int b = arr[1]; // b is now 4
int c = arr[2]; // c is now 6
return 0;
}
3) std::get<pos>
This non-member function returns a reference to the element at compile-time constant position pos
without bounds checking. If pos
is not within the range of the container, a runtime segmentation violation error can occur.
The complexity is constant O(1).
#include <array>
int main()
{
std::array<int, 3> arr;
// write values
std::get<0>(arr) = 2;
std::get<1>(arr) = 4;
std::get<2>(arr) = 6;
// read values
int a = std::get<0>(arr); // a is now 2
int b = std::get<1>(arr); // b is now 4
int c = std::get<2>(arr); // c is now 6
return 0;
}
4) front()
Returns a reference to the first element in container. Calling front()
on an empty container is undefined.
The complexity is constant O(1).
Note: For a container c, the expression c.front()
is equivalent to *c.begin()
.
#include <array>
int main()
{
std::array<int, 3> arr{ 2, 4, 6 };
int a = arr.front(); // a is now 2
return 0;
}
5) back()
Returns reference to the last element in the container.
Calling back()
on an empty container is undefined.
The complexity is constant O(1).
#include <array>
int main()
{
std::array<int, 3> arr{ 2, 4, 6 };
int a = arr.back(); // a is now 6
return 0;
}
6) data()
Returns pointer to the underlying array serving as element storage. The pointer is such that range [data(); data() + size())
is always a valid range, even if the container is empty (data()
is not dereferenceable in that case).
The complexity is constant O(1).
#include <iostream>
#include <cstring>
#include <array>
int main ()
{
const char* cstr = "Test string";
std::array<char, 12> arr;
std::memcpy(arr.data(), cstr, 12); // copy cstr to arr
std::cout << arr.data(); // outputs: Test string
return 0;
}
# Iterating through the Array
std::array
being a STL container, can use range-based for loop similar to other containers like vector
int main() {
std::array<int, 3> arr = { 1, 2, 3 };
for (auto i : arr)
cout << i << '\n';
}
# Checking size of the Array
One of the main advantage of std::array
as compared to C
style array is that we can check the size of the array using size()
member function
int main() {
std::array<int, 3> arr = { 1, 2, 3 };
cout << arr.size() << endl;
}
# Changing all array elements at once
The member function fill()
can be used on std::array
for changing the values at once post initialization
int main() {
std::array<int, 3> arr = { 1, 2, 3 };
// change all elements of the array to 100
arr.fill(100);
}
# Parameters
Parameter | Definition |
---|---|
class T | Specifies the data type of array members |
std::size_t N | Specifies the number of members in the array |
# Remarks
Use of a std::array
requires the inclusion of the <array>
header using #include <array>
.